Specious rules: an efficient and effective unifying method for removing misleading and uninformative patterns in association rule mining

نویسندگان

  • Wilhelmiina Hämäläinen
  • Geoffrey I. Webb
چکیده

We present theoretical analysis and a suite of tests and procedures for addressing a broad class of redundant and misleading association rules we call specious rules. Specious dependencies, also known as spurious, apparent, or illusory associations, refer to a well-known phenomenon where marginal dependencies are merely products of interactions with other variables and disappear when conditioned on those variables. The most extreme example is Yule-Simpson’s paradox where two variables present positive dependence in the marginal contingency table but negative in all partial tables defined by different levels of a confounding factor. It is accepted wisdom that in data of any nontrivial dimensionality it is infeasible to control for all of the exponentially many possible confounds of this nature. In this paper, we consider the problem of specious dependencies in the context of statistical association rule mining. We define specious rules and show they offer a unifying framework which covers many types of previously proposed redundant or misleading association rules. After theoretical analysis, we introduce practical algorithms for detecting and pruning out specious association rules efficiently under many key goodness measures, including mutual information and exact hypergeometric probabilities. We demonstrate that the procedure greatly reduces the number of associations discovered, providing an elegant and effective solution to the problem of association mining discovering large numbers of misleading and redundant rules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining

Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...

متن کامل

Exploring the Relationships between Spatial and Demographic Parameters and Urban Water Consumption in Esfahan Using Association Rule Mining

In recent years, Iran has faced serious water scarcity and excessive use of water resources. Therefore, exploring the pattern of urban water consumption and the relationships between geographic and demographic parameters and water usage is an important requirement for effective management of water resources. In this study, association rule mining has been used to analyze the data of municipal w...

متن کامل

Introducing an algorithm for use to hide sensitive association rules through perturb technique

Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...

متن کامل

Applying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures

Uncertain and stochastic states have been always taken into consideration in the fields of risk management and accident, like other fields of industrial engineering, and have made decision making difficult and complicated for managers in corrective action selection and control measure approach. In this research, huge data sets of the accidents of a manufacturing and industrial unit have been st...

متن کامل

Association rule mining application to diagnose smart power distribution system outage root cause

Smart grid has been introduced to address power distribution system challenges. In conventional power distribution systems, when a power outage happens, the maintenance team tries to find the outage cause and mitigate it. After this, some information is documented in a dataset called the outage dataset. If the team can estimate the outage cause before searching for it, the restoration time will...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017